## Scalability: Induction, Interpolation, Property Directed Reachability

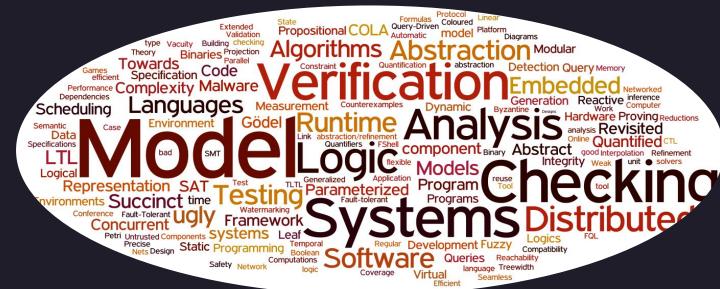
#### **PALLAB DASGUPTA**

FNAE, FASc, FIETE, Professor,

Dept of Computer Science & Engineering Indian Institute of Technology Kharagpur

Email: pallab@cse.iitkgp.ac.in

Web: http://cse.iitkgp.ac.in/~pallab



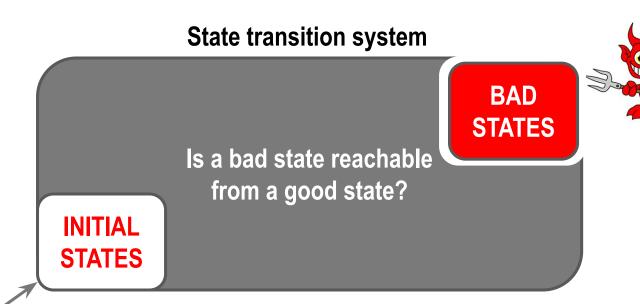






## **INDUCTION**

### The intuitive basis for induction



#### Suppose we prove the following:

- All initial states are good, and
- The transition relation does not allow any transition from a good state to a bad state

Then inductively, we are safe

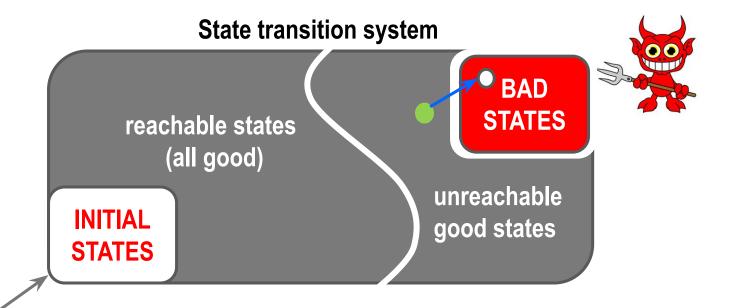
Let P(x) be the formula representing good states, T(i, x, x') represent the transition relation, and I(x) represent the set of initial states.

#### Then we check:

- 1. Basis:  $I(x) \Rightarrow P(x)$  all initial states are good
- 2. Induction:  $P(x) \land T(i, x, x') \Rightarrow P(x')$  successors of good states are good

Then, by induction, no bad state is reachable.

# **Deeper induction**



#### In general the basic induction fails.

- For example, the green state is a good state having a bad successor, but it is not reachable from the initial states. The property holds on all reachable states.
  - Conclusion: The failure of basic induction does not mean that bad states are reachable.

We shall define a deeper form of induction with a depth bound k. We shall call it k-induction

### *k*-induction

A property P(x) is called a *k-invariant* if it overapproximates all states reachable up to *k* steps. That is:

$$\forall 0 \leq N \leq k. \left( (I(x_0) \wedge \bigwedge_{j=0}^{N-1} T(i_j, x_j, x_{j+1}) \right) \Rightarrow P(x_N)$$

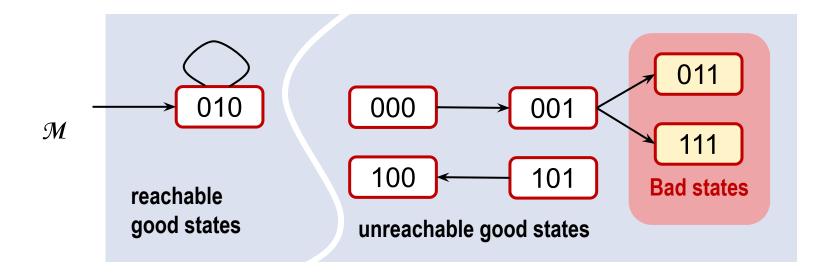
A formula P(x) is called a *k-inductive invariant* if it is *k-invariant* and:

$$\left(\bigwedge_{j=0}^{k} P(x_j) \wedge T(i_j, x_j, x_{j+1})\right) \Rightarrow P(x_{k+1})$$

This means that P(x) is *k-inductive invariant* if all states reachable within *k* steps satisfy P(x) and any sequence of *k* states satisfying P(x) guarantees that the  $(k + 1)^{st}$  state also satisfies P(x)

This happens when there are no good state sequences of length more than k leading to a bad state

## **Example**



$$P(x) = \neg x_2 \lor \neg x_3$$
 Therefore Bad = { 011, 111 }

P(x) is 3-inductive in  $\mathcal{M}$ 

Why is it not 1-inductive or 2-inductive?

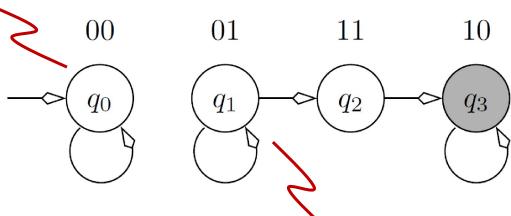
## *k*-induction is not complete

$$\forall 0 \leq N \leq k. \left( (I(x_0) \wedge \bigwedge_{j=0}^{N-1} T(i_j, x_j, x_{j+1}) \right) \Rightarrow P(x_N)$$

Here,  $P(x) = \neg (x_1 \land \neg x_2) = \neg x_1 \lor x_2$ and therefore, Bad =  $\{q_3\}$ 

Because of the loop at  $q_0$ , property P(x) is k-invariant

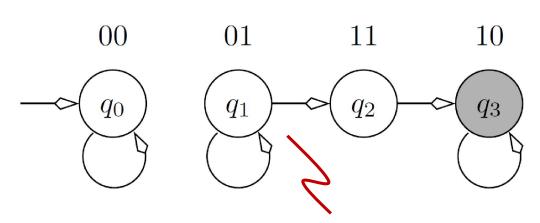
for all values of k.



Because of the loop at  $q_1$ , formula P(x) is not k-inductive invariant, even if k is arbitrarily large.

$$\left(\bigwedge_{j=0}^{k} P(x_j) \wedge T(i_j, x_j, x_{j+1})\right) \Rightarrow P(x_{k+1})$$

## k-induction with loop detection



Here, 
$$P(x) = \neg (x_1 \land \neg x_2) = \neg x_1 \lor x_2$$
  
and therefore, Bad =  $\{q_3\}$ 

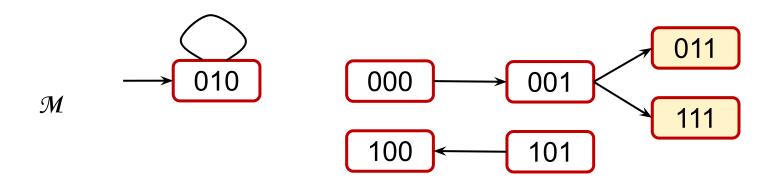
Because of the loop at  $q_1$ , formula  $\phi$  is not *k-inductive* invariant, even if *k* is arbitrarily large.

*k-induction* can be made complete by adding a test for repetition of states.

Thereby, we test whether there are no non-repeating state sequences of length more than k leading to a bad state.

However, if P(x) is k-inductive for large k, then we have many rounds of unfolding of the transition relation, T

### Abstraction can affect k-induction

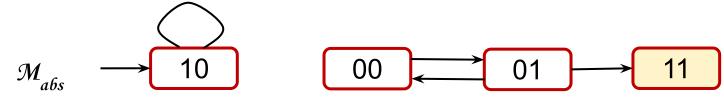


$$P(x) = \neg x_2 \lor \neg x_3$$

Therefore Bad = { 011, 111 }

P(x) is 3-inductive in  $\mathcal{M}$ 

### Suppose we abstract M by dropping $x_1$



P(x) is not k-inductive in  $\mathcal{M}_{abs}$ 

Can abstraction affect single step induction? No, as long as all variables of P(x) are retained